
Thinking in Java, 3rd ed. Revision 4.0
Bruce Eckel

1: Introduction to Objects

“We cut nature up, organize it into concepts, and ascribe significances as we do, largely
because we are parties to an agreement that holds throughout our speech community and
is codified in the patterns of our language ... we cannot talk at all except by subscribing
to the organization and classification of data which the agreement decrees.”
Benjamin Lee Whorf (1897-1941)

The genesis of the computer revolution was in a machine. The genesis of our
programming languages thus tends to look like that machine.

But computers are not so much machines as they are mind amplification tools (“bicycles
for the mind,” as Steve Jobs is fond of saying) and a different kind of expressive medium.
As a result, the tools are beginning to look less like machines and more like parts of our
minds, and also like other forms of expression such as writing, painting, sculpture,
animation, and filmmaking. Object-oriented programming (OOP) is part of this
movement toward using the computer as an expressive medium.

The progress of abstraction

All programming languages provide abstractions. It can be argued that the complexity of
the problems you’re able to solve is directly related to the kind and quality of abstraction.
By “kind” I mean, “What is it that you are abstracting?” Assembly language is a small
abstraction of the underlying machine. Many so-called “imperative” languages that
followed (such as FORTRAN, BASIC, and C) were abstractions of assembly language.
These languages are big improvements over assembly language, but their primary
abstraction still requires you to think in terms of the structure of the computer rather than
the structure of the problem you are trying to solve. The programmer must establish the
association between the machine model (in the “solution space,” which is the place where
you’re modeling that problem, such as a computer) and the model of the problem that is
actually being solved (in the “problem space,” which is the place where the problem
exists). The effort required to perform this mapping, and the fact that it is extrinsic to the
programming language, produces programs that are difficult to write and expensive to
maintain, and as a side effect created the entire “programming methods” industry.

The alternative to modeling the machine is to model the problem you’re trying to solve.
Early languages such as LISP and APL chose particular views of the world (“All
problems are ultimately lists” or “All problems are algorithmic,” respectively). PROLOG
casts all problems into chains of decisions. Languages have been created for constraint-
based programming and for programming exclusively by manipulating graphical

symbols. (The latter proved to be too restrictive.) Each of these approaches is a good
solution to the particular class of problem they’re designed to solve, but when you step
outside of that domain they become awkward.

The object-oriented approach goes a step further by providing tools for the programmer
to represent elements in the problem space. This representation is general enough that the
programmer is not constrained to any particular type of problem. We refer to the
elements in the problem space and their representations in the solution space as “objects.”
(You will also need other objects that don’t have problem-space analogs.) The idea is that
the program is allowed to adapt itself to the lingo of the problem by adding new types of
objects, so when you read the code describing the solution, you’re reading words that also
express the problem. This is a more flexible and powerful language abstraction than what
we’ve had before.1 Thus, OOP allows you to describe the problem in terms of the
problem, rather than in terms of the computer where the solution will run. There’s still a
connection back to the computer: each object looks quite a bit like a little computer—it
has a state, and it has operations that you can ask it to perform. However, this doesn’t
seem like such a bad analogy to objects in the real world—they all have characteristics
and behaviors.

Alan Kay summarized five basic characteristics of Smalltalk, the first successful object-
oriented language and one of the languages upon which Java is based. These
characteristics represent a pure approach to object-oriented programming:

 1. Everything is an object. Think of an object as a fancy variable; it stores data, but
you can “make requests” to that object, asking it to perform operations on itself. In
theory, you can take any conceptual component in the problem you’re trying to solve
(dogs, buildings, services, etc.) and represent it as an object in your program.
 2. A program is a bunch of objects telling each other what to do by sending
messages. To make a request of an object, you “send a message” to that object. More
concretely, you can think of a message as a request to call a method that belongs to a
particular object.
 3. Each object has its own memory made up of other objects. Put another way, you
create a new kind of object by making a package containing existing objects. Thus, you
can build complexity into a program while hiding it behind the simplicity of objects.
 4. Every object has a type. Using the parlance, each object is an instance of a class, in
which “class” is synonymous with “type.” The most important distinguishing
characteristic of a class is “What messages can you send to it?”
 5. All objects of a particular type can receive the same messages. This is actually a
loaded statement, as you will see later. Because an object of type “circle” is also an object
of type “shape,” a circle is guaranteed to accept shape messages. This means you can

1 Some language designers have decided that object-oriented programming by itself is not
adequate to easily solve all programming problems, and advocate the combination of
various approaches into multiparadigm programming languages. See Multiparadigm
Programming in Leda by Timothy Budd (Addison-Wesley 1995).

write code that talks to shapes and automatically handle anything that fits the description
of a shape. This substitutability is one of the powerful concepts in OOP.

Booch offers an even more succinct description of an object:

An object has state, behavior and identity.

This means that an object can have internal data (which gives it state), methods (to
produce behavior), and each object can be uniquely distinguished from every other
object—to put this in a concrete sense, each object has a unique address in memory.2

An object has an interface

Aristotle was probably the first to begin a careful study of the concept of type; he spoke
of “the class of fishes and the class of birds.” The idea that all objects, while being
unique, are also part of a class of objects that have characteristics and behaviors in
common was used directly in the first object-oriented language, Simula-67, with its
fundamental keyword class that introduces a new type into a program.

Simula, as its name implies, was created for developing simulations such as the classic
“bank teller problem.” In this, you have a bunch of tellers, customers, accounts,
transactions, and units of money—a lot of “objects.” Objects that are identical except for
their state during a program’s execution are grouped together into “classes of objects”
and that’s where the keyword class came from. Creating abstract data types (classes) is a
fundamental concept in object-oriented programming. Abstract data types work almost
exactly like built-in types: You can create variables of a type (called objects or instances
in object-oriented parlance) and manipulate those variables (called sending messages or
requests; you send a message and the object figures out what to do with it). The members
(elements) of each class share some commonality: every account has a balance, every
teller can accept a deposit, etc. At the same time, each member has its own state: each
account has a different balance, each teller has a name. Thus, the tellers, customers,
accounts, transactions, etc., can each be represented with a unique entity in the computer
program. This entity is the object, and each object belongs to a particular class that
defines its characteristics and behaviors.

So, although what we really do in object-oriented programming is create new data types,
virtually all object-oriented programming languages use the “class” keyword. When you
see the word “type” think “class” and vice versa.3

2 This is actually a bit restrictive, since objects can conceivably exist in different
machines and address spaces, and they can also be stored on disk. In these cases, the
identity of the object must be determined by something other than memory address.
3 Some people make a distinction, stating that type determines the interface while class is
a particular implementation of that interface.

Since a class describes a set of objects that have identical characteristics (data elements)
and behaviors (functionality), a class is really a data type because a floating point
number, for example, also has a set of characteristics and behaviors. The difference is
that a programmer defines a class to fit a problem rather than being forced to use an
existing data type that was designed to represent a unit of storage in a machine. You
extend the programming language by adding new data types specific to your needs. The
programming system welcomes the new classes and gives them all the care and type-
checking that it gives to built-in types.

The object-oriented approach is not limited to building simulations. Whether or not you
agree that any program is a simulation of the system you’re designing, the use of OOP
techniques can easily reduce a large set of problems to a simple solution.

Once a class is established, you can make as many objects of that class as you like, and
then manipulate those objects as if they are the elements that exist in the problem you are
trying to solve. Indeed, one of the challenges of object-oriented programming is to create
a one-to-one mapping between the elements in the problem space and objects in the
solution space.

But how do you get an object to do useful work for you? There must be a way to make a
request of the object so that it will do something, such as complete a transaction, draw
something on the screen, or turn on a switch. And each object can satisfy only certain
requests. The requests you can make of an object are defined by its interface, and the type
is what determines the interface. A simple example might be a representation of a light
bulb:

 Light lt = new Light();
 lt.on();

The interface establishes what requests you can make for a particular object. However,
there must be code somewhere to satisfy that request. This, along with the hidden data,

comprises the implementation. From a procedural programming standpoint, it’s not that
complicated. A type has a method associated with each possible request, and when you
make a particular request to an object, that method is called. This process is usually
summarized by saying that you “send a message” (make a request) to an object, and the
object figures out what to do with that message (it executes code).

Here, the name of the type/class is Light, the name of this particular Light object is lt, and
the requests that you can make of a Light object are to turn it on, turn it off, make it
brighter, or make it dimmer. You create a Light object by defining a “reference” (lt) for
that object and calling new to request a new object of that type. To send a message to the
object, you state the name of the object and connect it to the message request with a
period (dot). From the standpoint of the user of a predefined class, that’s pretty much all
there is to programming with objects.

An object provides services

While you’re trying to develop or understand a program design, one of the best ways to
think about objects is as “service providers.” Your program itself will provide services to
the user, and it will accomplish this by using the services offered by other objects. Your
goal is to produce (or even better, locate in existing code libraries) a set of objects that
provide the ideal services to solve your problem.

A way to start doing this is to ask “if I could magically pull them out of a hat, what
objects would solve my problem right away?” For example, suppose you are creating a
bookkeeping program. You might imagine some objects that contain pre-defined
bookkeeping input screens, another set of objects that perform bookkeeping calculations,
and an object that handles printing of checks and invoices on all different kinds of
printers. Maybe some of these objects already exist, and for the ones that don’t, what
would they look like? What services would those objects provide, and what objects
would they need to fulfill their obligations? If you keep doing this, you will eventually
reach a point where you can say either “that object seems simple enough to sit down and
write” or “I’m sure that object must exist already.” This is a reasonable way to
decompose a problem into a set of objects.

Thinking of an object as a service provider has an additional benefit: it helps to improve
the cohesiveness of the object. High cohesion is a fundamental quality of software
design: It means that the various aspects of a software component (such as an object,
although this could also apply to a method or a library of objects) “fit together” well. One
problem people have when designing objects is cramming too much functionality into
one object. For example, in your check printing module, you may decide you need an
object that knows all about formatting and printing. You’ll probably discover that this is
too much for one object, and that what you need is three or more objects. One object
might be a catalog of all the possible check layouts, which can be queried for information
about how to print a check. One object or set of objects could be a generic printing
interface that knows all about different kinds of printers (but nothing about

bookkeeping—this one is a candidate for buying rather than writing yourself). And a
third object could use the services of the other two to accomplish the task. Thus, each
object has a cohesive set of services it offers. In a good object-oriented design, each
object does one thing well, but doesn’t try to do too much. As seen here, this not only
allows the discovery of objects that might be purchased (the printer interface object), but
it also produces the possibility of an object that might be reused somewhere else (the
catalog of check layouts).

Treating objects as service providers is a great simplifying tool, and it’s very useful not
only during the design process, but also when someone else is trying to understand your
code or reuse an object—if they can see the value of the object based on what service it
provides, it makes it much easier to fit it into the design.

